Stiffness and failure analysis of SMC components considering the anisotropic material properties

Author(s):  
M. Piry ◽  
W. Michaeli
Author(s):  
Brennan Davis ◽  
Wilson Chi

Abstract The use of an antireflection coating for backside semiconductor failure analysis is discussed. The process of selecting an appropriate coating is described. Several known coatings are also described in regards to imaging quality, material properties, and the benefits to device analysis applications.


2017 ◽  
Vol 107 (10) ◽  
pp. 714-718
Author(s):  
P. Prof. Groche ◽  
W. Franke ◽  
A. Ackermann

Ein breiterer Einsatz von Papier könnte sich auf die Umweltbilanz zahlreicher Branchen zum Beispiel der Verpackungsindustrie positiv auswirken. Allerdings stehen der Umsetzung zahlreiche Herausforderungen im Wege. Bei der umformtechnischen Herstellung dreidimensionaler Produkte aus Papier erfordern insbesondere die anisotropen Werkstoffeigenschaften geeignete Maßnahmen. Dieser Fachbeitrag zeigt, wie durch gezielte, lokal angepasste Werkzeugtemperierung die Maßhaltigkeit der Produkte zu verbessern ist.   A broad use of paper could improve the life cycle assessment of industry sectors like the packaging industry. However, there are many obstacles to the application. Especially the anisotropic material properties need suitable measures to the forming manufacturing of three-dimensional products made of paper. This article presents how to improve the size accuracy of products made of paper by the use of targeted, locally heated tools.


Author(s):  
Jami M. Saffioti ◽  
Brittany Coats

Current finite element (FE) models of the pediatric eye are based on adult material properties [2,3]. To date, there are no data characterizing the age dependent material properties of ocular tissues. The sclera is a major load bearing tissue and an essential component to most computational models of the eye. In preparation for the development of a pediatric FE model, age-dependent and anisotropic properties of sclera were evaluated in newborn (3–5 days) and toddler (4 weeks) pigs. Data from this study will guide future testing protocols for human pediatric specimens.


Author(s):  
Benjamin Crowgey ◽  
Junyan Tang ◽  
Ozgur Tuncer ◽  
Leo Kempel ◽  
Edward Rothwell ◽  
...  

2012 ◽  
Vol 430-432 ◽  
pp. 242-246
Author(s):  
Li Jie Zhao ◽  
Qiang Fu

Cellulose paper is used as base material for so-called electroactive papers (EAPap) actuator. EAPap is a complex anisotropic material, which has not been extensively characterized and additional basic testing is required before developing application devices from EAPap. Mechanical properties of EAPap were investigated in this work under different environmental conditions (humidity, temperature, and electrical field) and configurations. It shows viscoelastic effect and exhibits two distinct elastic and plastic modulus connected by a bifurcation point. Through tests, environment and configuration effects on EAPap are obtained to researchers and designers interested in the field of smart materials and EAP.


2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Farah Hamandi ◽  
James T. Tsatalis ◽  
Tarun Goswami

The main motivation for studying damage in bone tissue is to better understand how damage develops in the bone tissue and how it progresses. Such knowledge may help in the surgical aspects of joint replacement, fracture fixation or establishing the fracture tolerance of bones to prevent injury. Currently, there are no standards that create a realistic bone model with anisotropic material properties, although several protocols have been suggested. This study seeks to retrospectively evaluate the damage of bone tissue with respect to patient demography including age, gender, race, body mass index (BMI), height, and weight, and their role in causing fracture. Investigators believe that properties derived from CT imaging data to estimate the material properties of bone tissue provides more realistic models. Quantifying and associating damage with in vivo conditions will provide the required information to develop mathematical equations and procedures to predict the premature failure and potentially mitigate problems before they begin. Creating a realistic model for bone tissue can predict the premature failure(s), provide preliminary results before getting the surgery, and optimize the design of orthopaedic implants. A comparison was performed between the proposed model and previous efforts, where they used elastic, hyper- elastic, or elastic-plastic properties. Results showed that there was a significant difference between the anisotropic material properties of bone when compared with unrealistic previous methods. The results showed that the density is 50% higher in male subjects than female subjects. Additionally, the results showed that the density is 47.91% higher in Black subjects than Mixed subjects, 53.27% higher than Caucasian subjects and 57.41% higher than Asian. In general, race should be considered during modeling implants or suggesting therapeutic techniques.


Sign in / Sign up

Export Citation Format

Share Document